

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Part-II Examination, 2020

PHYSICS

PAPER-IV

Time Allotted: 2 Hours

Full Marks: 35

The figures in the margin indicate full marks.

Question No. 1 is compulsory and Group-A, Group-B and Group-C as per direction

1. (a) What do you mean by optical path and reduced path lengths?	1
(b) Draw on OR and an AND gate using p-n junction diodes and explain their operation.	$1\frac{1}{2}$
(c) Show that the distance between two virtual sources in a Fresnel's bi-prism is given by $d = 2a(\pi - 1)\alpha$, where the symbols have their usual significance.	$1\frac{1}{2}$
(d) Why the centre of Newton's ring is dark? — Explain.	1

GROUP-A

(Geometrical Optics)

		Answer any <i>one</i> of the following	10×1=10
2.	(a)	Prove that the axial magnification is proportional to square of the transverse magnification.	4
	(b)	Show that when a thick lens is surrounded by a homogeneous medium, the nodal points coincide with the principal points.	4
	(c)	How will you arrange two lenses for,	1+1
		(i) Dispersion without deviation?	
		(ii) Deviation without dispersion?	
3.	(a)	What is achromatism? Find the required condition of achromatism for two lenses separated by a distance.	1+2
	(b)	Two convex lenses of focal lengths 10 cm and 20 cm are placed 5 cm apart in air. Find the cardinal points of the system.	2
	(c)	Calculate the values of Cauchy's constants A and B for dispersion through crown glass. Given $\mu_{\rm C} = 1.541$; $\lambda_{\rm C} = 6563$ Å; $\mu_{\rm F} = 1.524$ and $\lambda_{\rm F} = 4862$ Å.	2

B.Sc./Part-II/Hons./(1+1+1) System/PHSH-IV/2020

(d) Give the merits and demerits of Ramsden's eyepiece, why i	s it called a positive 2+1
eyepiece?	

GROUP-B

(Physical Optics)

	Answer any <i>one</i> of the following	10×1=10
4. (a) Apply Huygen's principle to deduce the laws of reflection of plane waves at plane surface. Hence on the basis of wave theory, explain the phenomena of total internal reflection.	5
(b) When a film of transparent material of refractive index 1.2 is put behind on of the slits of a two-slit Young's experiment, the zeroth order fringe moves to the position previously occupied by the 4 th order bright fringe. Given that the wavelength λ of the light used 5000 Å. Find the thickness of the film.	3
(c) To which class does the interference in Newton's rings and that in the bi-prism experiment belong?	1
(d) What happens to the interference pattern if the entire apparatus used in Young's experiment is immersed in water?	1
5. (a) With a neat diagram, explain the formation of fringes by Lloyd's mirror and explain why the central fringes is dark.	4+1
(b) Find an expression for fringe width in Young's double slit experiment.	2
(c) The inclined faces of a bi-prism ($\mu = 1.5$) make angles of 1° with the base of a prism. A slit is 10 cm away from the bi-prism, and it is illuminated with a light source of $\lambda = 5900$ Å. Find out the fringe width observed at a distance of 1 m from the bi-prism.	2
(d) What do you mean by anti-reflection coating?	1
6. (a) Discuss the phenomenon of Fraunhofer diffraction of a single slit and show that the intensities of successive maxima are nearly in the ratio	4+2
	$\frac{4}{9\pi^2}$: $\frac{4}{25\pi^2}$: $\frac{4}{49\pi^2}$	
(b) Explain half-period zone in relation to a plane wave front. Show that it acts as a convergent lens having multiple foci.	4
7. (a) Find an expression for resolving power of grating.	4
(b) A thin transparent plate of refractive index 1.5 is introduced in one arm of Michelson interferometer. It causes 12 fringe shift. Find the thickness of plate, taking $\lambda = 600$ nm.	2
(c) Discuss the differences between prism and grating spectrum.	2
(d) Show that the interference patterns in reflected and transmitted lights in thin film are complementary to each-other.	2

GROUP-C

(Electronics-I)

Answer any *one* of the following $10 \times 1=10$

8. (a) State Theorem. Calculate the current through the 4 k Ω resistor of the given circuit.

- (b) Explain the terms (i) barrier potential (ii) depletion region for a p-n junction.
 2+3
 Derive an expression for the barrier potential of an unbiased p-n junction in terms of the donor and acceptor concentrations.
- (c) Explain with necessary circuit diagram, how a diode can be used as a clamper.
- 9. (a) The Boolean expression for two variables Y_1 and Y_2 in terms of inputs *A*, *B* and *C* are C are

$$Y_1 = (A+B) \cdot (B+C) \cdot (C+A)$$
$$Y_2 = AB + BC + CA$$

Find the relation between Y_1 and Y_2 .

- (b) Implement the logic circuit of the Boolean junction $Y = \overline{A\overline{B} + \overline{A}B}$ using NOR 2 gates only.
- (c) For the circuit shown in the figure below, given that

$$V_{\rm CC} = 20 \,\mathrm{V}, \ R_{\rm C} = 5 \,\mathrm{k}\Omega, \ R_{\rm E} = 1 \,\mathrm{k}\Omega, \ R_{\rm I} = 20 \,\mathrm{k}\Omega \text{ and } R_{\rm I} = 3 \,\mathrm{k}\Omega$$

The transistor parameters are $\beta = 100$, $V_{\rm BE} = 0.7 \,\rm V$. Assume $I_{\rm CO} \ll I_{\rm C}$. Determine the *Q*-point.

(d) Use 2's complement method to perform the subtraction 48 - 24.

2

2

4

-×-